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Abstract 

Consumers are more health-conscious than ever, and there has been a sharp rise in the demand 

for fresh goods. In this situation, preventing the associated losses from perishable goods 

deterioration requires an effective and efficient inventory management system. In addition, a 

number of factors, including price, stock levels, and freshness state, affect product demand. As a 

result, this study creates an inventory model for perishable goods that is limited by deterioration 

in both physical and freshness conditions. Green technologies and preservation are also employed 

to slow down the rate of deterioration and carbon emissions, correspondingly. Perishable goods 

demand is influenced by a number of variables, including price, quantity in stock, and freshness. 

Six price-dependent demand functions (linear, isoelastic, exponential, logit, logarithmic, and 

polynomial) are used in relation to price. This inventory model also accounts for the cost of 

deterioration and the expiration 

date, because it works with perishable items that eventually deteriorate. In addition, a quadratic 

function of time is used to model the holding cost. In order to maximize total profit per unit of 

time, the suggested inventory model simultaneously determines the best price, the replenishment 

cycle time, and the order quantity. This inventory model is widely applicable because it can be 

used in a variety of contexts, including the production of food products (such as milk, vegetables, 

and meat), living things, and decorative flowers, among others. Use of this model is demonstrated 

with a few numerical examples. A sensitivity analysis is then carried out, and various managerial 

insights are offered. 
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1 Introduction 

Worldwide, inventory management is a crucial function for businesses. In order to prevent overstock 

and/or stockouts, it aims to maintain control over the materials from acquisition through sales-related 

decision-making (how much and when to buy items). Annadurai and rajarajeswari [1] addressed an 

integrated mixture of distribution model for environmental cost with fuzzy demand. Yavari et al. [21] 

indicated that one of the difficulties in inventory management is the perishability of many products, 

which means that their quality and freshness deteriorate with time and that they cannot be sold after 

their expiration date. As stated by Tirkolaee et al.[15], organisms, decorative flowers, and food items 

(such as milk, vegetables, and meat) all have a built-in perishability. These authors also mentioned 

how important it is for producers and buyers to have a window of time between preparing and selling 

perishable goods. Over the past few decades, supply chain managers have placed a strong emphasis 

on reducing the energy consumption and greenhouse gas (GHG) emissions corresponding with their 

production and logistics systems. This interest arose as a result of social pressure and consumer 

awareness of the importance of sustainability to their communities, which prompted governments to 

enact laws that took this viewpoint into consideration in an effort to improve the preservation of natural 

resources and reduce the negative environmental effects of product manufacture, use, and disposal. 

Energy efficiency has the potential to increase supply chain efficiency. Supply chain management is 

unique in that it incorporates environmental considerations alongside the traditional economic focus, 

without bringing in the concept of carbon emissions. Supply chain managers can lessen their impact 
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on the environment by using energy more wisely and producing fewer emissions. Long-term cost 

savings and enhanced environmental performance are possible outcomes. Energy storage technologies 

and renewable energy sources can also lower emissions and boost efficiency. While lowering energy 

consumption and carbon emissions in conventional manufacturing is challenging, it is achievable with 

production rate management. 

 

Novelty of the study 

As closing the stock cycle with zero inventory is the best course of action when handling perishable 

goods, this research project creates an inventory model for perishable goods that have zero inventory 

at the conclusion of the stock cycle. While the demand for these perishable goods is influenced by a 

number of factors, including price, quantity of on-hand stock, and freshness condition, they are also 

susceptible to physical deterioration and freshness degradation over time. Six different price-dependent 

demand functions-linear, isoelastic, exponential, logit, logarithmic, and polynomial-are taken into 

consideration for the price-related demand. The perishable item’s expiration date, salvage value, and 

deterioration cost are also taken into account by the inventory model. Furthermore, it is believed that 

the holding cost has a quadratic function of time and is nonlinear. The suggested inventory model 

simultaneously determines the best course of action for the quantity ordered, the price, and the 

replenishment cycle time, all of which work together to maximize the overall profit per unit of time. 

Prioritizing environmental preservation and reducing waste and carbon emissions during supply chain 

operations, including production, rework, transportation, storage, and deterioration, is crucial. This can 

be achieved through strategic implementation of carbon tax policies. There is still work to be done on 

applying learning concepts, enhancing inventory quality, assessing the impact of inflation under 

investment, and protecting products and energy flexibility using preservation technology. Because of 

this, it hasn’t happened, which is what makes this research paper so special. Therefore, it is crucial to 

look at how decision-makers Six different price-dependent demand functions, waste management, 

perishable goods, green technology, and preservation technology into their supply chain inventory 

system in an uncertain environment in order to achieve environmental and economic sustainability. 

 

Structure of this study 

The remaining portions of this research are divided into the following sections. In section 2 includes a 

literature review to provide motivation for the current work. Section 3 contains notations and basic 

assumptions required for modeling purposes. In section 4 the inventory model with price, stock, and 

time-dependent demand with nonlinear holding cost is developed. Section 5 develops the solution 

procedure to determine the optimal solution. Section 6 presents the solution to six different price-

dependent demand functions and solves some numerical examples. A sensitivity analysis with 

managerial insights are proposed in section 7. Finally, Section 8 provides the conclusions and outlines 

several areas for further research. 

 

2 Literature review 

In this section, we have to discussed the literature review related in different direction (1) Inventory 

model with price,stock, and age- dependent demand, with zero inventory at the end of the cycle (2) 

Inventory models with carbon emissions & energy usage. 

2.1 Inventory model with price,stock, and age- dependent demand, with zero inventory at the 

end of the cycle 

Pal et al. [12] addressed a production-inventory model for deteriorating products when the production 

cost depends on both production order quantity and production rate, given that the inherent 

perishability can occur immediately. Subsequently, while taking into account several just-in-time 

deliveries, Mashud et al. [5] identified the best replenishment strategy for deteriorating goods for the 

traditional newsboy inventory problem. Furthermore, Mashud et al. [2] developed an inventory model 

for deteriorating products that determines the ideal values for price, green investment cost, and 

replenishment time. Additionally, some products have a non-instantaneous intrinsic perishability. 

Mashud et al. [4] created an inventory model for non-instantaneous deteriorating items that optimises 

cycle time, price, preservation technology, and credit financing. Mashud et al. [3] proposed an 
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inventory model for non-instantaneous deteriorating goods, determining cycle length, price, and 

preservation costs. Hasan et al. [22] proposed a non-instantaneous inventory model for agricultural 

goods that accounts for their perishable nature. This model identifies optimal inventory pricing and 

timing policies. Consumers are becoming more healthconscious, leading to an increase in demand for 

fresh items. Consumers prefer to purchase fresh goods with extended shelf life. Companies should 

carefully manage and control their fresh inventory in warehouses. RFID smart tags are commonly used 

to track the freshness and quality of perishable items in warehouses, reducing the risk of selling expired 

items. Herbon et al. [6], Herbon et al. [7], and Herbon and Ceder [8] studied the impact of using the 

timetemperature-indicator (TTI) to provide online expiration dates for various items. Displaying large 

quantities on shelves can encourage consumers to buy more products. Retailers can increase profits by 

making their products more available. Perishable items, which degrade over time, may not be as 

appealing or sellable at the end of their shelf life. Lower prices lead to increased demand, while higher 

prices lead to decreased demand. Price, stock availability, time, and shelf-life are key factors 

influencing demand for perishable products and should be taken into account when creating inventory 

models. The literature on inventory models with time, price, and stock-dependent demand is extensive. 

Mashud et al. [9] developed a price-sensitive inventory model based on an exponential or isoelastic 

price-dependent demand. Avinadav et al. [34] proposed two inventory models based on the assumption 

that demand is influenced by both price and stock age, resulting in optimal pricing and inventory 

policies. 

The first inventory model assumes multiplicative demand, whereas the second assumes additive 

demand. Qin et al. [37] developed an inventory model to determine pricing and policies for perishable 

items, taking into account stockdependent demand and quality degradation. Later, Chen et al. [33] 

determined the optimal inventory policy and shelf-space size for fresh products, taking into account 

expiration time and demand rates based on freshness and stock levels. Font et al. [16] resolved Chen 

et al.’s [33] inventory model by incorporating the demand rate as a function of price, stock, and age. 

Dobson et al. [17] developed an EOQ inventory model for a perishable item with a fixed shelf-life. 

The model assumes that demand decreases linearly with stock age. Herbon and Khmelnitsky [10] 

developed an inventory model to determine the optimal replenishment time and price based on the 

demand rate, which varies with both time and price. Banerjee and Agrawal [32] proposed optimal 

discounting and ordering policies for deteriorating products, with a demand rate based on price and 

freshness. Hsieh and Dye [35] proposed an optimal pricing policy for deteriorating goods, taking into 

account the impact of reference prices and the assumption that stocks stimulate demand. Li and Teng 

[26] developed pricing strategies for perishable items based on reference price, inventory, and 

freshness. Recently, Agi and Soni [23] created an inventory model that optimises pricing and inventory 

management for perishable items with stock, age, and price-dependent demand, allowing for surplus 

inventory at the end of the cycle. These authors stated that finishing the inventory cycle period with a 

positive inventory level results in a benefit because the demand increases when large quantities are 

ordered and exhibited in the shelf space. Keeping perishable products at the end of their cycle is not 

ideal as they cannot be stored for the next inventory cycle. Therefore, these must be sold at a salvage 

price. Inventory models typically assume a constant holding cost, but factors such as storage location 

can cause this cost to vary. Longer storage periods often lead to higher holding costs due to the need 

for more expensive warehouse facilities. Longterm storage of fresh products requires refrigeration and 

specific conditions to prevent damage. Alfares and Ghaithan [18] conducted a comprehensive review 

of the EOQ and EPQ inventory models with variable holding costs. Specifically, variable holding costs 

into three types: time-dependent, stock-dependent, and multiple dependence cost variability. There are 

several types of holding cost functions: constant, linear, nonlinear, step, and general. There are several 

functions available to model variable time-dependent holding costs. Valliathal and Uthayakumar [24] 

used a quadratic holding cost function to create two EPQ inventory models for deteriorating items. The 

holding cost was nonlinear and time-dependent. Years later, Pal et al. [13] studied the single-period 

newsvendor model and found that the optimal lot size for customers who baulk is determined by a 

nonlinear holding cost that varies with lot size and stock level. Tripathi and Mishra [27] studied two 

inventory models with time-varying holding costs to determine the optimal order quantity and 
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replenishment cycle time. The first inventory model has a linearly time-dependent holding cost, while 

the second has a quadratic time dependence for carrying inventory costs. 

Sivashankari [14] compared three EPQ inventory models with the assumption that carrying inventory 

costs are constant, linear, or quadratic over time. 

 

2.2 Inventory models with carbon emissions and energy usage 

The role of renewable energy is critical in developing sustainable supply chains. Sustainability consists 

of three fundamental pillars: economic, environmental, and social. Renewable energy impacts all three 

pillars of economic development by making traditional energy more expensive for companies. 

Developing countries have implemented emission-reduction policies (e.g., cap and trade) and 

advanced technology to reduce carbon dioxide emissions, as rising demand leads to higher emissions. 

The authors explored how government regulation can reduce carbon emissions and energy use in 

production systems. Feng et al. [20] proposed a supply chain inventory model that integrates 

environmental, social, and economic considerations into business operations to enhance sustainability. 

Ahi and Searcy [11] conducted extensive research on the incorporation of sustainability concepts into 

the supply chain. Sarkar et al. [30] proposed a sustainable inventory model for multi-items with 

imperfect production processes and optimal energy consumption. Mashud et al. [25] developed a 

sustainable inventory approach with controllable carbon emissions. Thomas and Mishra [36] 

developed a circular economy inventory model to reduce waste and pollution through 3D printing and 

other emission-reducing mechanisms. Using waste and carbon reduction technologies led to significant 

profit increases in the plastic reforming industry. Ruidas et al. [29] proposed a sustainable economic 

production quantity model for green degree products with green subsidies. Higher subsidy intensity 

improves product greenness, while investing in green innovation and emission reduction technology 

benefits both manufacturers and the environment. Jauhari [19] developed a supply chain system for 

imperfect products that prioritises optimum energy consumption and controllable production rates. 

Ruidas et al. [28] proposed a production inventory model with price and green degree-dependent 

demand, accounting for cap-and-trade policies. The joint investment in Green Innovation (GI) and 

Emission Reduction Technology (ERT) benefits both the green product manufacturer and the 

environment. Sarkar et al.[31] developed a sustainable inventory system for substitutable products 

under a dual channel policy and a fully controlled emission production system. They saw that 

investments made in green projects benefit the environment. 

 

3 Notation and Assumptions 

3.1 Notation 

The following notations are used to develop the inventory model with age, price, and stock dependent 

demand and zero inventory at cycle’s end with carbon emission. In order to have a standard notation, 

the symbols of Agi and Soni [23] are used, and a few more symbols are defined here. 

A  Cost of salvaging a degraded item  

P  Purchase price (unit/$)  

D  Cost of deterioration (in units or $) 

H  Storage fee (monetary sign, unit, or time unit) 

Ha  Holding cost ($/unit/unitoftime2) 

Hb  Holding cost ($/unit/unitoftime3) 

O  Ordering cost ($/percycle) 

N  The item’s shelf life, after which any leftover quantity is removed right   

              away from storage (measured in units of time)  

W0  Maximum unit of shelf space.(units) b0 Salvage coefficient(0 ≤ η ≤ 1)  

θ0  Inventory deterioration rate (0 ≤ θ ≤ 1)  

ω0  Sensitivity parameter to the current level of stock 

 a0  Scale parameter for the part of price-dependent demand  

b0  Sensitivity parameter for the part of price-dependent demand 

D0(p)   Price-dependent demand for the item, which can be linear, isoelastic,   

              exponential, logit, logarithmic, or polynomial function (units/unit of  
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              time) 

 i0(T)  Stock level at time T (units) 

d(p0,i0(T),T) Price, stock, and age-dependent demand for the item at time T     

               (units/unit of time)  

h(T)  Quadratic holding cost function  

πc(p,t)  Total profit per cycle ($/unit) 

π(p,t)  Total profit per unit of time ($/unitoftime) 

T  Age of the stock, which is the time passed since the last replenishment   

               (unit of time)  

P  Product selling price ($/unit)  

T  Age of the stock, which is the time passed since the last replenishment  

               (unit of time) 

q  Order quantity (units) 

N0  Fixed transportation cost ($/delivery) 

N1  Variable transportation cost ($/delivery) 

F1  Fuel consumption of an empty truck (litre/km)  

F2  Fuel consumption per ton q (litre/km)  

vc  Distance travelled from producer to retailer (km)  

ϵ  Investment in green technology ($/unit/month)  

ce  Carbon emission caused by holding inventory (tonCO2/unit)  

τ  Cost for emission of carbon from vehicles ($/km)  

dt  Cost for emission of carbon from transporting items ($/unit/km)  

cd  Carbon emission caused by retailer’s deteriorating inventory 

               (tonCO2/unit) 

 λ0  Proportion of carbon emission after investment in green (0 < λ0 < 1) 

 

3.2 Assumptions 

The inventory model is based on the following assumptions: 

1. Over time, the item in storage is susceptible to two types of degradation: freshness degradation and 

physical degradation at a constant rate. 

2. The product has a set, finite shelf life beyond which it can no longer be sold. 

3. Price, the quantity of the item in stock at any given time, and freshness all affect demand. Six distinct 

price-dependent demand functions are used to account for price-dependent demand: logit, logarithmic, 

polynomial, exponential, linear, and isoelastic. 

4. At the conclusion of the cycle, there are none left. 

5. The holding cost is nonlinear and is represented by a time-dependent quadratic function (H + H1T 

+ H2T
2). 

6. For the items that deteriorated over the course of the inventory cycle, the salvage value and 

deterioration cost are considered. 

7. The planning time horizon is infinite.Since there is no lead time, there is an instantaneous 

replenishment rate. 

8. The item is fresh at the start of the stock period (T = 0) and its age has no bearing on demand. With 

time, the product loses its freshness, which lowers demand for it. 

9. Given that the item becomes unsalable after its expiration date (t ≤ N), the stock period (t) cannot 

be longer than its shelf life (N). 

10. Carbon emissions stem from a multitude of supply chain system operations, including setup, 

production, rework, transportation, inventory holding, waste management, and deterioration. 

11. Decision-makers combine a carbon tax policy with a creative investment in green technology to 

lower the rate of carbon emissions. 
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Fig. 1 Graphical representation of the inventory level over time 

 

4 Mathematical formulation 

4.1 Inventory model with price, stock, and ageDependent Demand, with Zero Inventory at the 

End of the Cycle 

The problem being studied is described below. A business oversees a product that is naturally 

perishable and is susceptible to deterioration in terms of both freshness and physical state. Furthermore, 

it is well known that the product has a finite shelf life, after which it can no longer be sold. Because of 

this, the stock cycle cannot last longer than the item’s shelf life. Because of the nature of the product, 

demand is influenced by its price, availability, and freshness. Conversely, the goal is to finish the 

inventory cycle with zero inventory. For the deteriorated items over the course of the inventory period, 

the salvage value and deterioration cost are also taken into account. The inventory level’s behavior 

over time is depicted in Figure 1. The retailer receives a lot size of q units at the start of the stock cycle 

(T = 0), and the inventory level starts to decline right away as a result of both deterioration and demand. 

This process continues until the stock level hits zero units at t = T. 

The on-hand stock degrades at a steady rate (θ0) and gradually loses freshness over the course of the 

stock cycle [0,t]. The following function indicates how price, stock, and age affect demand: 

  (1) 

the price-dependent demand component (D0(p)) can be expressed as follows: 

  (linear demand) 

 D0(p) = aop
−b0, 0 ≤ p ≤∞ (iso-elastic demand) 

 D0(p) = aoe
−b0p, 0 ≤ p ≤∞ (exponental demand) 

 (logit demand) 

 D0(p) = a0 − bolnp, 0 ≤ p ≤ e(a0/b0) (logarithmic demand) 

  (polynomial demand) (2) 

This study’s six price-dependent demand functions accurately model scenarios where demand rises as 

prices fall, and vice versa. 

The differential equation below models the behavior of the on-hand inventory level i0(T), taking into 

account the assumptions mentioned above. 

  (3) 

with the boundary condition 

 i0(t) = 0. (4) 

Solving differential equation (3) yields the inventory level i0(T) as shown below 

: 

  (5) 

The order quantity q at i0(0) is expressed as follows : 

 
(6) 



133                                                                                  Vol.19, No.02(VII), July-December:  2024 
The total costs calculated as ordering, holding, purchasing, deterioration, transportation and carbon 

emission. The ordering cost reflects the cost of placing an order. To calculate the holding cost, take the 

definite integral from zero to t of the product of the quadratic holding cost function H(T) and the stock 

level function i0(T). The purchase cost is calculated by multiplying the unit purchase cost(C) by the 

order quantity (q). To calculate the deterioration cost, multiply the unit deterioration cost (CD) by the 

number of deteriorated units per cycle. The waste management process with consideration for the 

environment. 

The detailed calculation of all components of the total cost function is mathematically presented below. 

(1) Ordering cost (O) per cycle is 

OC = O. (7) 

(2) The holding cost (HC) per cycle is 

, 

 (8) 

(3) Purchase cost (PC) per cycle is 

 (9)  

(4) The deterioration cost (DC) per cycle is 

 
(10) 

(5) Transportation cost (T) is 

 . (11) 

(6) Green technology cost is 

 . (12) 

(7) Carbon emission cost from inventory sector energy and carbon emits because of transportation, 

carrying inventory, and deterioration. Therefore the total amount of carbon emission is 

 
Now, the cost associated with the emissions and energy from the inventory sector under a carbon tax 

policy is CE = te(TE) 
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After investing in green technology, the total cost of carbon emissions 

  (14) 

Therefore, the total cost per cycle is 

TC = ordering cost + holding cost + purchase cost + deterioration cost+ transportation cost +green 

technology cost+ carbon emission cost. And, it is expressed as 

 
(15) 

Hence, the total cost per unit of time is expressed as follows 
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(16)  

The optimization problem is typically formulated as follows: 

Minp,t,ϵTC(p,t,ϵ) 

(17) 

 subject to P ≤ p ≤ pmin and t ≤ N. 

The total cost per unit of time function given in equation (16) illustrates a nonlinear relationship 

between selling price (p) and replenishment cycle time (t). As a result, these decision variables cannot 

be represented by a closed form. The optimal solution for p , T and ϵ is determined using traditional 

optimization criteria. The solution procedure is described in the following section. 

5 Solution Procedure to Obtain the Optimal Solution 

The goal is to find the optimal selling price (p) and replenishment cycle time (t) to minimize total costs. 

The cost per unit of time function TC(p,t,ϵ) is continuous and twice differentiable on the interval [0,∞], 

implying a global minimum on that interval. 

To minimize the total cost per unit of time function TC(p,t,ϵ), the following conditions must be met. 

               (18) ,                                        

(19) 

(20) 

Moreover, for the expected total cost per unit of time function TC(p,t,ϵ) to be 

convex, the sufficient conditions are given as follows: 

 , (21) 

  (22) 

 (23) The nature of the Hessian matrix is determined by using 

 
The optimal solution is found by solving the first partial derivatives of the total cost per unit of time 

function in equation (16) with respect to p, T, and ϵ equating zero. If the solution (p,T,ϵ) meets the 

conditions in equations (18-23), it indicates that the function TC(p,T,ϵ) is strictly convex in decision 

variables and has a positive definite Hessian matrix. If true, the solution TC(p,T,ϵ) is optimal. 

The selling price has a lower bound of pmin and the replenishment cycle time has a lower bound of N 

in the optimization problem given by equation (17). The demand component D0(p) that is correlated 

with price is represented by six distinct functions. The price p interval for isoelastic, exponential, and 

logit functions is [0,∞]. On the other hand, there is a minimum allowable value pmin for polynomial, 

logarithmic, and linear functions. For the linear, logarithmic, and polynomial cases, the lower bound 

pmin is (a/b), e(a/b), and (a/b)(1/m) respectively. When the selling price p is greater than the selling price 

pmin, the selling price solution for these demand functions is p = pmin. This makes it possible to prevent 

a price-dependent demand that is positive. While mathematically correct, it is not applicable to real-

world situations the replenishment cycle time t lies between 0 and ∞. Because of the shelf life 

constraint, the replenishment cycle time solution is t = N when the solution for the replenishment cycle 

time t is greater than N. 

Algorithm 

Algorithm for finding the best solution. Based on the previous section’s theoretical results, we propose 

the following algorithm (Algorithm 1). 

Algorithm 1 

1. Input the inventory parameters. 

2. Calculate pmin. 

3. Solve simultaneously equations (18),(19) and (20) to obtain the values for p , t and ϵ. 

4. Proceed to step 5 if the conditions (18)–(23) are met, indicating that the solution is ideal. If not, the 

solutions are not workable and you should proceed to step 14. 
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5. If both P ≥ p ≥ pmin and t ≥ N are satisfied, then set p∗ = p and t∗ = t, and go to step 11. Else, go to 

step 6. 

6. If both p ≥ P and t ≥ N are satisfied, then set p∗ = P and t∗ = t, and go to step 11. Else, go to step 7. 

7. If both p ≥ P and t < N are satisfied, then set p∗ = P and t∗ = N, and go to step 11. Else, go to step 8. 

8. If both p > pmin and t ≤ N are satisfied, then set p∗ = pmin and t∗ = t, and go to step 11. Else, go to step 

9. 

9. If both p ≤ pmin and t < N are satisfied, then set p∗ = p and t∗ = N, and go to step 11. Else, go to step 

10. 

10. Set p = pmin and t∗ = N. 

11. Calculate the lot size q∗ with equation (6). 

12. Compute the total profit per unit of time TC∗(p∗,t∗,ϵ) with equation 

(16). 

13. Report the optimal solution TC∗(p∗,t∗), p∗, t∗, ϵ∗and q∗. 

14. Stop. 

 

6 Optimal inventory policy or six different price-dependent demands with carbon emission 

6.1 Optimal inventory policy using the price-dependent linear demand function D0(p) = a0 − b0(p) 

The first partial derivative of TC(p,t,ϵ) with respect to p is 

 
(24) 

The first partial derivative of TC(p,t,ϵ) with respect to t is 
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(25) 

The first partial derivative of TC(p,t,ϵ) with respect to ϵ is 

  (26) 

6.1.1 Example 1 

To illustrate a real-world situation, let’s look at a store that offers freshly made goods. Assume that the 

demand for the fresh item is linear in its price-dependent component: D0(p) = 600 − 20p. The shelf-

life of the fresh item is N = 1 week. There is a minmum shelf space of w0 = 500 units. The cost for 

placing an order to the supplier is O = 250 euros per order, the purchase cost is P = 5 euros per unit, 

and the sensitivity coefficient to the level of stock is ω0 = 0.5, and the stock deterioration rate is θ0 = 

0.05. The aforementioned data were taken from Hasan et al. [22]. Additional data are still needed to 

solve the numerical examples. The values of the holding cost are H = 1.75 dollars per unit per week, 

H1 = 0.15 dollars per unit per week2, and H2 = 0.25 dollars per unit per week3. The deterioration cost 

of the item is d = 2 dollars per units and we have b0 = 0.8 for the salvage coefficient. t must be less 

than one week because N equals one week for the replenishment cycle time. The lower bound for price 

in the price linear demand is given by pmin = (a/b) = (600/20) = 30. The following optimal solution for 

the inventory system is computed using the suggested algorithm p∗ = 16.69 dollars per unit, t∗ = 0.4295 

weeks, ϵ∗ = 0.2368, q∗ = 93.4294 units, and TC∗(p∗,T∗,ϵ∗) = 2048.903 dollars per week. This solution 

satisfies all conditions for the optimality. It is ensured that the solution corresponds a global minimum 

(see Figure 2). 
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Fig. 2 Convex property of the total cost TC(p,t,ϵ) when the pricedependent 

demand function is linear. 

6.2 The price-dependent isoelastic demand function with carbon emission D0(p) = a0p−b0 

The first partial derivative of TC(p,t,ϵ) with respect to p is 

 
(27) 

The first partial derivative of TC(p,t,ϵ) with respect to t is 
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(28) 

The first partial derivative of TC(p,t,ϵ) with respect to ϵ is 

 
6.2.1 Example 2 

Let’s look at the identical data from Example 1. Assume for the moment that the price-dependent 

component of demand for the perishable commodity has the following isoelastic function: D0(p) = 

30000p−1.4. By using the algorithm proposed, the following optimal solution for the inventory model 

is determined: p∗ = 17.47 dollars per unit, t∗ = 0.29969 weeks, 

ϵ∗ = 0.2209, q∗ = 142.51 units, and TC∗(p∗,T∗,ϵ∗) = 5265.004 dollars per week. The total cost function 

is strictly convex and has a positive definite Hessian matrix; the Hessian determinant is less than zero. 

Thus, the solution is the optimal. It is ensured that the solution corresponds a global minimum (see 

Figure 3). 

 
Fig. 3 Convex property of the total cost TC(p,t,ϵ) when the pricedependent 

demand function is isoelastic. 

6.3 Optimal inventory policy using the price-dependent exponential demand function with 

carbon emission D0(p) = a0e−b0p 

The first partial derivative of TC(p,t,ϵ) with respect to p is 
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(30) 

 
(31) 

The first partial derivative of TC(p,t,ϵ) with respect to ϵ is 

 
6.3.1 Example 3 

Let’s look at the identical data from Example 1. Assume for the moment that the price-dependent 

component of demand for the perishable commodity has the following the price exponential demand, 
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function: D0(p) = 2000e−0.2p. By using the algorithm proposed, the following optimal solution for the 

inventory model is determined: p∗ = 9.5058 dollars per unit, t∗ = 0.6087 weeks,ϵ∗ = 0.2590 ,q∗ = 120.36 

units, and TC∗(p∗,T∗,ϵ∗) = 563.3379 euros per week. The total cost function is strictly convex and has 

a positive definite Hessian matrix; the Hessian determinant is less than zero. Thus, the solution is the 

optimal. It is ensured that the solution corresponds a global minimum (see Figure 4). 

 
Fig. 4 Convex property of the total cost TC(p,t,ϵ) when the pricedependent 

demand function is exponential.. 

6.4 Optimal inventory policy using the price-dependent logit demand function with carbon 

emission 

 D  a 

The first partial derivative of TC(p,t,ϵ) with respect to p is 

 
(33) 
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(34) 

The first partial derivative of TC(p,t,ϵ) with respect to ϵ is 

  (35) 

6.4.1 Example 4 

Let’s look at the identical data from Example 1. Assume for the moment that the price-dependent term 

of the demand for the fresh article following a logit demand function: D0(p) = (9000/(1+e0.3p)). By 

using the algorithm proposed, the following optimal solution for the inventory model is determined: 

p∗ = 7.9635 dollars per unit, t∗ = 0.4582 weeks,ϵ∗ = 0.2378, q∗ = 230.1214 units, and TC∗(p∗,T∗,ϵ∗) = 

1203.467 dollars per week. The total cost function is strictly convex and has a positive definite Hessian 

matrix; the Hessian determinant is less than zero. Thus, the solution is the optimal. It is ensured that 

the solution corresponds a global minimum (see Figure 5). 

 
Fig. 5 Convex property of the total cost TC(p,t,ϵ) when the pricedependent demand function is logit. 
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6.5 Optimal inventory policy using the price-dependent logarithmic demand function with 

carbon emission D0(p) = (a0 − b0)ln(p) 

The first partial derivative of TC(p,t,ϵ) with respect to p is 

 
(36) 

The first partial derivative of TC(p,t,ϵ) with respect to t is 

 
(37) 

The first partial derivative of TC(p,t,ϵ) with respect to ϵ is 
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  (38) 

6.5.1 Example 5 

Let’s look at the identical data from Example 1. Assume for the moment that pricedependent factor of 

the demand for the fresh produce follows a logarithmic demand function: 

D0(p) = 95−21lnp. By using the algorithm proposed, the following optimal solution for the inventory 

model is determined: p∗ = 38.1535 dollars per unit, t∗ = 0.8629 weeks,ϵ∗ = 9.6536, q∗ = 0.22090 units, 

and TC∗(p∗,T∗,ϵ∗) = 115.4864 dollar per week. The total cost function is strictly convex and has a 

positive definite Hessian matrix; the Hessian determinant is less than zero. Thus, the solution is the 

optimal. It is ensured that the solution corresponds a global minimum (see Figure 6). 

 
Fig. 6 Convex property of the total cost TC(p,t,ϵ) when the pricedependent 

demand function is logarithmic. 

6.6 Optimal inventory policy using the price-dependent polynomial demand function with 

carbon emission D0(p) = (a0 − b0)pm. 

The first partial derivative of TC(p,t,ϵ) with respect to p is 

 
(39) 

The first partial derivative of TC(p,t,ϵ) with respect to t is 
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(40) 

The first partial derivative of TC(p,t,ϵ) with respect to ϵ is 

  (41) 

6.6.1 Example 6 

Let’s look at the identical data from Example 1. Assume for the moment that the price-dependent 

portion of the demand for the fresh produce following a polynomial demand function: 

D0(p) = 4000−2p3. By using the algorithm proposed, the following optimal solution for the inventory 

model is determined: p∗ = 8.4752 dollar per unit, t∗ = 0.2156 weeks,ϵ∗ = 0.2345, q∗ = 487.724 units, and 

TC∗(p∗,T∗,ϵ∗) = 8082.7 dollars per week. The total cost function is strictly convex and has a positive 

definite Hessian matrix; the Hessian determinant is less than zero. Thus, the solution is the optimal. It 

is ensured that the solution corresponds a global minimum (see Figure 7). 

 
Fig. 7 Convex property of the total cost TC(p,t,ϵ) when the pricedependent 

demand function is polynomial. 

7 Sensitivity Analysis 

The sensitivity analysis performed to investigate the impact of the inventory model’s input parameters 

on the choice variables (p,t,q,ϵ) and total cost TC(p,T,ϵ) is shown in this section. For each of the six 

price-dependent demands, a sensitivity analysis is conducted. Each input parameter has a unique value, 
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whereas the other input data are fixed. Tables 1 - 6 display the findings. Additionally included below 

are some observations and managerial insights. Tables 1 - 6 show how the input parameters affect the 

price-dependent linear, isoelastic, exponential, logit, logarithmic, and polynomial demand functions’ 

optimal solutions for p,t,q,ϵ and the total cost, respectively. 

The numerical experimentation displayed in Tables 1–5 provides the foundation for Table 6. As the 

parameters of the inventory model are increased, Table 6 displays the behaviour of the variables as 

well as the total cost. Tables 1–6 provide the observations and managerial insights that follow. 

• In all price-demand functions, the maximum shelf-life (N) of a fresh item and the ordering cost (O) 

have an identical effect on the inventory policy and overall profit. Longer product shelf-life N leads to 

higher prices, longer cycle times, and greater order quantities. This implies that a marketer can charge 

more for a fresh product because its shelf life is greater and it loses its appeal over time. Prices and 

inventory cycle times rise in tandem with an increase in ordering cost O, while overall profit typically 

decreases. Then, in order to increase profitability, managers ought to take steps to reduce ordering 

costs. 

• Increased values of the demand sensitivity to stock level (ω0) parameter lead to higher prices, longer 

inventory cycle times, and larger profitability. With the exception of the logarithmic function, which 

shows a tendency for the ideal price and inventory cycle time to decrease as this parameter grows, this 

behaviour is seen in five price-demand functions. It is discovered that greater values of the demand 

sensitivity to stock level (ω0) parameter lead to bigger order quantities for all price-demand 

relationships. In this instance, taking high values of the ω0 parameter would be advised in order to 

produce high values of profits because it does not directly depend on the decision maker. This indicates 

that managers are more eager to display greater amounts of inventory on their shelves. 

• Increased values of the demand sensitivity to stock level (ω0) parameter lead to higher prices, longer 

inventory cycle times, and larger profitability. With the exception of the logarithmic function, which 

shows a tendency for the ideal price and inventory cycle time to decrease as this parameter grows, this 

behaviour is seen in five price-demand functions. Higher values of the parameter of demand sensitivity 

to the stock level (ω0) are found to result in a bigger order quantity for all price-demand functions. In 

this instance, it is suggested to use high values of the ω0 parameter to produce high values of profits 

because it does not directly depend on the decision maker. This indicates that managers are more eager 

to display greater amounts of inventory on their shelves. 

• The price and inventory cycle time increase marginally as the purchase cost (P) rises. On the other 

hand, as this expense rises, the profit decreases. Every price-demand function exhibits this behaviour. 

Thus, the recommendation would be to create low-cost purchasing procedures in order to increase 

profits independent of how demand functions and the price that is applied. Finding different suppliers 

who can provide goods at a lesser price without sacrificing quality is one way. 

• The holding cost function (H,H1,H2) and the deterioration cost (d) have larger coefficients, which lead 

to a marginally higher selling price but a smaller cost. This pattern of behaviour is seen in all price-

demand functions. Conversely, for the rest of the price-demand relationships, the inventory cycle time 

drops and grows for the logarithmic function. Decision-makers are typically urged to put strategies in 

place to have minimal product deterioration costs in order to boost total cost. Lower values for the 

holding cost function’s component parts also need to be taken into account. 

• In the logarithmic, polynomial, and linear functions, higher prices and shorter inventory cycle times 

are attained by fixing the parameter of the demand’s sensitivity to price (b0) and raising the values of 

the demand’s scale parameter (a0). Conversely, as the scale parameter rises in the isoelastic, 

exponential, and logit price demand functions, lower prices and lower inventory cycles are seen. 

Greater advantages are obtained in all price-demand functions when the value of an is raised while the 

value of b0 remains constant. Therefore, it is suggested that greater values be maintained for this 

parameter. 

• In all price-demand functions, larger values of the demand sensitivity to price (b0) lead to lower selling 

prices and profits, but longer inventory cycles when the scale parameter of the demand (a0) is kept 

constant. Therefore, regardless of the price demand utilized, low values of this parameter b0 should be 

used to ensure that overall profits are always higher. 
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8 Conclusion 

An inventory model incorporating price, stock, and time dependent demand is developed in this 

research effort. Zero-ending inventory is assumed, and both the physical deterioration and the state of 

freshness degradation over time are taken into account. Price-dependent demand functions of the 

following six varieties are examined: polynomial, logit, exponential, isoelastic, and logit. When 

dealing with perishable goods, the full cycle takes into account both a salvaged value and a 

deteriorating cost. There is also a nonlinear, time-dependent holding cost—more precisely, a quadratic-

type function. When dealing with perishable goods, the full cycle takes into account both a salvaged 

value and a deteriorating cost. There is also a nonlinear, time-dependent holding cost more specifically, 

a quadratic-type function. 

The inventory model uses an algorithm to calculate the best values for the order amount, price, and 

inventory cycle time. There are certain numerical examples given, and a sensitivity analysis for each 

and every input parameter is shown. A comparable pattern in the selling price, inventory cycle time, 

quantity to order, and total cost is produced by an increase in the ordering cost (O), purchasing cost 

(P), and shelf-life (N). This was discovered by analysing the behaviour of the choice variables and 

total cost. Furthermore, an increase in the value of the shelf-life (N) results in an increment in price, 

inventory cycle time, quantity ordered, and costs generated for all functions. Finally, by raising the 

purchasing cost for all functions, there is an increase in both the price and the inventory cycle time; 

however, the quantity to order and total cost tend to increase. As the ordering cost increases (O), price, 

the inventory cycle time, and quantity ordered also increase for all functions. Nevertheless, the costs 

show an increasing trend. 

This study expands and significantly advances the state-of-the-art in the field of inventory, 

concentrating on perishable goods whose demand is reliant on price, stock, and time. The inventory 

model under study has certain shortcomings, which reveal various avenues for further investigation 

and extension. It is first necessary to investigate a model that permits shortages with either complete 

or partial backlog. Secondly, research should be done on the advantages and trade-offs of investing in 

preservation technologies. Third, the suggested inventory model might incorporate the freshness 

deterioration of the non-instantaneous item. Lastly, additional elements can also be researched, such 

as implementing discount programmers or advertising campaigns. 
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Parameter p T ϵ Q TC 

 0.5 16.62065 0.2795503 0.2431 53.61395 1456.227 

 0.6 16.63586 0.3111456 0.23923 61.92978 1626.649 

 0.7 16.65028 0.3415362 0.24316 69.96242 1761.836 

 0.8 16.66419 0.3711902 0.24390 77.8329 1873.133 

 0.9 16.6778 0.4004517 0.23450 85.63123 1967.361 

N 1 16.69124 0.4295922 0.23682 93.42941 2048.903 

 1.1 16.70463 0.4588389 0.2431 101.2887 2120.728 

 1.2 16.71807 0.4883923 0.23626 109.2643 2184.928 

 1.3 16.73165 0.5184379 0.24409 117.4082 2243.032 
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 1.4 16.74546 0.5491541 0.23822 125.7715 2296.187 

 1.5 16.75956 0.5807188 0.22090 134.4061 2345.277 

 250 16.69124 0.4295922 0.23451 93.42941 2048.903 

 300 16.70497 0.4666712 0.24390 99.6798 1939.786 

O 350 16.71696 0.5001394 0.2431 105.0448 1838.465 

 400 16.72758 0.5307686 0.22837 109.7159 1743.321 

 450 16.73707 0.5590932 0.24316 113.8253 1653.228 

 500 16.74562 0.5755007 0.23142 117.4688 1567.368 

 0.25 16.68249 0.3995219 0.23626 83.91483 1919.088 

 0.35 16.6858 0.4107697 0.26353 87.4505 1969.198 

ω0 0.45 16.68936 0.4230415 0.23626 91.33854 2021.689 

 0.5 16.69124 0.4295922 0.24316 93.42941 2048.903 

 0.55 16.69317 0.4364355 0.23450 95.6265 2076.807 

 0.03 16.68352 0.4299946 0.24390 93.1671 2051.515 

 0.04 16.68737 0.4297943 0.25901 93.2983 2050.211 

θ0 0.05 16.69124 0.4295922 0.2431 93.4294 2048.903 

 0.06 16.6951 0.4293881 0.24873 93.5602 2046.593 

 0.07 16.69898 0.4291822 0.24390 93.69074 2046.279 

 4 16.18122 0.4156198 0.23599 94.76367 2268.809 

 4.5 16.43615 0.4224792 0.24390 94.1051 2157.583 

P 5 16.69124 0.4295922 0.23451 93.4294 2048.903 

 5.5 16.94647 0.4369741 0.23626 92.73557 1942.772 

 6 17.20186 0.4446421 0.21824 92.02275 1839.193 

1.65,0.05,0.15 16.68038 0.420920 0.23789 93.74612 2053.729 

1.70,0.10,0.20 16.68582 0.420255 0.23626 93.58753 2051.314 

H 1.75, 0.15, 0.25 16.69124 0.429592 0.2431 93.42941 2048.903 

1.80, 0.20, 0.30 16.69664 0.428930 0.24317 93.27176 2046.496 

1.85, 0.25, 0.35 16.70203 0.428271 0.23142 93.11458 2044.093 

 1 16.68655 0.420052 0.24390 92.54633 2050.972 

 1.5 16.68889 0.429822 0.23822 92.48785 2049.937 

d 2 16.69124 0.429592 0.24390 92.42941 2048.903 

 2.5 16.69358 0.429362 0.23822 92.37101 2047.87 

 3 16.69592 0.429132 0.22837 92.31266 2046.837 

 0.6 16.69498 0.429224 0.23593 93.33599 2047.25 

 0.7 16.69311 0.429408 0.24390 93.38269 2048.076 

b0 0.8 16.69124 0.429592 0.23682 93.42941 2048.903 

 0.9 16.68936 0.429776 0.24316 93.47616 2049.731 

 1 16.68748 0.429960 0.22090 93.52293 2050.558 

 360 10.79361 0.760094 0.23793 68.96747 230.0563 

 480 13.73238 0.544978 0.2431 84.21757 955.0452 

a0,b0 fixed 600 16.69124 0.429592 0.23450 93.42941 2048.903 

720 19.66264 0.355883 0.24390 99.8173 3507.115 

840 22.64165 0.304190 0.23626 104.5754 5327.862 

5 61.60045 0.207419 0.21824 57.93376 14328.26 

10 31.63771 0.294692 0.2431 75.55008 6004.921 

b0,a0 fixed 20 16.69124 0.429592 0.24390 93.42941 2048.903 

25 13.71425 0.492487 0.24316 98.05132 1312.228 

30 11.73633 0.556856 0.2431 100.7333 846.1779 

Table 1 Sensitivity analysis of the optimal solution for the price-dependent linear demand 

function. 

Parameter p T ϵ Q TC 

 0.5 17.1207 0.1906021 0.24316 86.68895 4385.067 

 0.6 17.19569 0.2131854 0.24409 98.39292 4637.565 
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 0.7 17.2679 0.2350845 0.22837 109.6674 4838.074 

 0.8 17.33853 0.2566374 0.23451 120.6934 5003.362 

 0.9 17.4084 0.2781024 0.23787 131.6066 5143.51 

N 1 17.4785 0.2996932 0.22090 142.5169 5265.004 

 1.1 17.5492 0.3215992 0.23450 153.5197 5372.237 

 1.2 17.62116 0.3439997 0.23682 164.7028 5468.315 

 1.3 17.6949 0.3670726 0.23593 176.1515 5555.509 

 1.4 17.77111 0.3910032 0.24164 187.9524 5635.533 

 1.5 17.8502 0.4159907 0.23923 200.197 5709.711 

 250 17.4785 0.2896932 0.23822 142.5169 5265.004 

 300 17.5564 0.3168009 0.24873 152.6876 5110.347 

O 350 17.6259 0.3413822 0.23599 161.5787 4967.135 

 400 17.6886 0.3639697 0.24316 169.47 4832.983 

 450 17.7459 0.3849329 0.23793 176.5547 4706.234 

 500 17.7987 0.4045407 0.21824 182.9726 4585.683 

 0.25 17.4029 0.2705749 0.23789 126.6708 5050.189 

 0.35 17.4308 0.2812172 0.23142 132.4547 5132.826 

ω0 0.45 17.46176 0.293162 0.25901 138.956 5219.756 

 0.5 17.4785 0.2996932 0.20389 142.5169 5265.004 

 0.55 17.4961 0.3066393 0.23609 146.3102 5311.546 

 0.03 17.4399 0.3001287 0.25763 142.6865 52760.35 

 0.04 17.4592 0.299911 0.24004 142.6018 5267.177 

θ0 0.05 17.4785 0.2996932 0.22090 142.5169 5265.004 

 0.06 17.4977 0.2994752 0.23787 142.4319 5262.831 

 0.07 17.51709 0.2992571 0.24004 142.3467 5260.658 

 4 13.9077 0.2835993 0.23450 183.7868 5804.186 

 4.5 15.6942 0.2921076 0.27431 160.8104 5514.016 

P 5 17.4785 0.2996932 0.25763 142.5169 5265.004 

 5.5 19.26106 0.3065394 0.24164 127.6391 5048.084 

 6 21.04224 0.3127805 0.24240 115.3246 4856.783 

 1.65, 0.05, 0.15 17.42584 0.3107838 0.23451 141.5444 5272.343 

 1.70, 0.10, 0.20 17.45222 0.3102363 0.23618 141.0284 5268.667 

H 2 1.75, 0.15, 0.25 17.4785 0.3096932 0.24164 141.5169 5265.004 

 1.80, 0.20, 0.30 17.5047 0.3091542 0.22837 141.0099 5261.354 

 1.85, 0.25, 0.35 17.5308 0.3086195 0.26353 141.5073 5257.717 

 1 17.45472 0.3001169 0.23923 142.9515 5268.293 

 1.5 17.46662 0.2999047 0.23872 142.7339 5266.647 

d 2 17.4785 0.2996932 0.23822 142.5169 5265.004 

 2.5 17.49037 0.2994822 0.24317 142.3007 5263.363 

 3 17.50223 0.2992719 0.20389 142.0853 5261.724 

 0.6 17.49749 0.299356 0.24390 142.1714 5262.379 

 0.7 17.488 0.2995244 0.24316 142.3439 5263.691 

b0 0.8 17.4785 0.2996932 0.15278 142.5169 5265.004 

 0.9 17.469 0.2998624 0.23682 142.6904 5266.318 

 1 17.45948 0.3000319 0.23593 142.8644 5267.634 

 360 18.01343 0.4979969 0.23599 68.67333 1349.356 

 480 17.65804 0.3628992 0.24164 110.0905 3265.695 

a0,b0 fixed 600 17.4785 0.2996932 0.23609 142.5169 5265.004 

720 17.36477 0.2609628 0.24409 170.0939 7305.271 

840 17.2842 0.234065 0.23793 194.5106 9375.999 

5 30.32621 0.2305638 0.24873 107.4781 10665.25 

10 21.74959 0.2642978 0.24164 130.4156 7418.431 

b0,a0 fixed 20 17.4785 0.2996932 0.25901 142.5169 5265.004 
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25 14.93154 0.3374883 0.23822 147.2634 3775.648 

30 13.24802 0.3782774 0.21824 146.9029 2717.869 

Table 2 Sensitivity analysis of the optimal solution for the price-dependent isoelastic demand 

function. 

 

Parameter p T ϵ Q TC 

 0.5 9.31047 0.4181761 0.26353 67.1642 204.8662 

 0.6 9.35651 0.4606555 0.22090 79.00251 310.0982 

 0.7 9.39787 0.500368 0.23450 90.08083 392.5449 

 0.8 9.43602 0.5379941 0.23599 100.5864 459.5593 

 0.9 9.47181 0.5740098 0.24164 110.6502 515.5487 

N 1 9.50582 0.6087656 0.25901 120.3688 563.3379 

 1.1 9.53846 0.6425299 0.23142 129.8162 604.8324 

 1.2 9.57 0.6755155 0.22837 139.0512 641.3708 

 1.3 9.6007 0.7078965 0.23787 148.1221 673.9252 

 1.4 9.63073 0.7398184 0.24409 157.069 703.2209 

 1.5 9.66023 0.7714064 0.23451 165.9269 729.8121 

 250 9.50582 0.6087656 0.24873 120.3688 563.3379 

 300 9.53844 0.6540886 0.23789 126.3607 486.3458 

O 350 9.56532 0.7143232 0.24164 131.0419 414.4977 

 400 9.58741 0.7605352 0.23822 133.6953 347.6073 

 450 9.60539 0.8034684 0.23593 137.5174 284.4805 

 500 9.61971 0.8436671 0.23609 139.6506 224.5008 

 0.25 9.50397 0.5898278 0.15278 110.1458 497.051 

 0.35 9.50459 0.5969651 0.22090 114.0211 522.7045 

ω0 0.45 9.50537 0.6046843 0.27154 118.1772 549.4925 

 0.5 9.50582 0.6087656 0.24316 120.3688 563.3379 

 0.55 9.5063 0.612996 0.25763 122.6407 577.4992 

 0.03 9.48514 0.6094522 0.23729 120.2816 566.9372 

 0.04 9.49547 0.6091109 0.23450 120.3257 565.1389 

θ0 0.05 9.50582 0.6087656 0.23793 120.3688 563.3379 

 0.06 9.5162 0.6084164 0.23787 120.4107 561.5343 

 0.07 9.5266 0.6080633 0.23815 120.4516 559.7281 

 4 8.458612 0.5436089 0.22347 139.2348 784.8765 

 4.5 8.981914 0.5805406 0.23142 129.5493 667.5296 

P 5 9.50582 0.6087656 0.23787 120.3688 563.3379 

 5.5 10.03024 0.6383456 0.23682 111.6667 470.9582 

 6 10.55502 0.6693453 0.24213 103.418 389.1792 

 1.65, 0.05, 0.15 9.47553 0.6010162 0.25901 121.4024 569.4779 

 1.70, 0.10, 0.20 9.4907 0.6098884 0.24317 120.8838 566.4016 

H 1.75, 0.15, 0.25 9.50582 0.6087656 0.23142 120.3688 563.3379 

 1.80, 0.20, 0.30 9.52089 0.6076479 0.24398 119.8572 560.2867 

 1.85, 0.25, 0.35 9.53591 0.6065353 0.20325 119.3493 557.2478 

 1 9.49339 0.6093265 0.24577 120.7445 564.8144 

 1.5 9.49961 0.6090458 0.22090 120.5564 563.5753 

d 2 9.50582 0.6087656 0.24390 120.3688 562.3379 

 2.5 9.51203 0.6084858 0.24227 120.1815 561.1023 

 3 9.51824 0.6082064 0.26353 119.9946 560.8685 

 0.6 9.51576 0.6083181 0.15278 120.0693 561.3618 

 0.7 9.51079 0.6085417 0.23822 120.2189 562.3493 

b0 0.8 9.50582 0.6087656 0.23609 120.3688 563.3379 

 0.9 9.50085 0.6089897 0.22837 120.5189 564.3277 

 1 9.49588 0.6092141 0.24873 120.6693 565.3185 
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 360 9.61971 0.8436671 0.20389 69.32532 111.7504 

 480 9.55693 0.6980697 0.23789 96.95558 328.0764 

a0,b0 fixed 600 9.50582 0.6087656 0.24164 120.3688 563.3379 

720 9.46593 0.5467266 0.24409 141.0386 810.742 

840 9.43408 0.5003661 0.21824 159.7423 1066.793 

5 14.32865 0.3601014 0.23793 142.3381 3164.293 

10 11.0851 0.4784015 0.22090 135.2242 1327.054 

b0,a0 fixed 20 9.50582 0.6087656 0.23682 120.3688 563.3379 

25 8.588089 0.7620412 0.23450 101.6994 199.5329 

30 7.976881 0.9533883 0.23599 80.83712 18.17279 

Table 3 Sensitivity analysis of the optimal solution for the price-dependent exponential 

demand function. 

 

Parameter p T ϵ Q TC 

 0.5 7.83536 0.321024 0.23793 141.0055 764.3444 

 0.6 7.865511 0.3425493 0.24227 161.432 895.2742 

 0.7 7.892812 0.3815668 0.24317 180.2635 997.0164 

 0.8 7.917971 0.4086151 0.23593 196.8412 1079.029 

 0.9 7.941448 0.4340691 0.23142 214.4026 1145.972 

N 1 7.96356 0.4582024 0.23787 230.1214 1203.467 

 1.1 7.98454 0.4812223 0.23599 245.1292 1253.953 

 1.2 8.004563 0.5032901 0.22090 259.5286 1295.141 

 1.3 8.023767 0.5245347 0.23451 273.4013 1334.271 

 1.4 8.04226 0.5450609 0.23450 286.8142 1369.265 

 1.5 8.060133 0.5649555 0.25901 299.8225 1399.829 

 250 7.96356 0.4582024 0.22837 230.1214 1204.467 

 300 7.993896 0.5032866 0.24409 245.2305 1102.581 

O 350 8.020562 0.544725 0.21824 256.9851 1007.949 

 400 8.044224 0.5832662 0.22090 265.8674 921.8403 

 450 8.065344 0.6194328 0.24390 277.2142 840.0543 

 500 8.084255 0.653607 0.24873 286.2716 762.7174 

 0.25 7.952328 0.4336449 0.23789 209.7649 1110.362 

 0.35 7.956561 0.4428506 0.24316 216.3899 1146.806 

ω0 0.45 7.961138 0.4528661 0.20389 225.6907 1184.823 

 0.5 7.96356 0.4582024 0.15278 230.1214 1204.467 

 0.55 7.966073 0.4637715 0.23682 234.7549 1223.56 

 0.03 7.94914 0.4599697 0.23505 230.7329 1212.075 

 0.04 7.956353 0.4590874 0.23609 230.4284 1207.27 

θ0 0.05 7.96356 0.4582024 0.23599 230.1214 1204.467 

 0.06 7.97076 0.4573149 0.23822 229.8119 1200.665 

 0.07 7.977954 0.4564249 0.25763 229.5 1196.863 

 4 5.98732 0.3995817 0.23505 270.7555 1779.799 

 4.5 7.471951 0.4276222 0.24021 250.07 1470.913 

P 5 7.96356 0.4582024 0.24227 230.1214 1204.467 

 5.5 8.46164 0.491547 0.23451 210.9723 974.7625 

 6 8.965678 0.5279028 0.23595 192.6657 780.43 

 1.65, 0.05, 0.15 7.943314 0.4518563 0.24398 232.8835 1216.321 

 1.70, 0.10, 0.20 7.953474 0.4500191 0.23785 231.494 1210.376 

H 1.75, 0.15, 0.25 7.96356 0.4582024 0.23142 230.1214 1204.467 

 1.80, 0.20, 0.30 7.973573 0.456406 0.26353 227.7656 1197.592 

 1.85, 0.25, 0.35 7.983515 0.4546297 0.15278 226.4263 1192.751 

 1 7.954758 0.459387 0.24409 231.161 1209.485 

 1.5 7.959163 0.4587938 0.20389 230.6402 1206.974 
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d 2 7.96356 0.4582024 0.22090 230.1214 1204.467 

 2.5 7.967948 0.4576128 0.24390 227.6046 1201.966 

 3 7.972328 0.4570249 0.22837 229.0898 1199.469 

 0.6 7.970577 0.4572598 0.23593 229.2955 1200.467 

 0.7 7.967071 0.4577306 0.23793 229.7078 1202.465 

b0 0.8 7.96356 0.4582024 0.24164 229.1214 1204.467 

 0.9 7.960043 0.4586754 0.23599 229.5363 1206.472 

 1 7.956521 0.4591495 0.23682 230.9525 1207.48 

 360 7.982996 0.4868576 0.23787 213.1093 1012.959 

 480 7.972915 0.4718983 0.23822 221.7441 1107.26 

a0,b0 fixed 600 7.96356 0.4582024 0.24317 230.1214 1204.467 

720 7.95485 0.445602 0.23450 237.263 1301.506 

840 7.946715 0.4339588 0.25901 246.1874 1399.313 

5 9.85935 0.3117571 0.24873 269.4118 3867.684 

10 8.698103 0.3795725 0.26353 252.8281 2169.566 

b0,a0 fixed 20 7.96356 0.4582024 0.24316 230.1214 1204.467 

25 7.474152 0.5525861 0.24409 203.7163 635.0077 

30 7.138176 0.670003 0.23451 175.082 293.6301 

Table 4 Sensitivity analysis of the optimal solution for the price-dependent logit demand function. 

 

Parameter p T ϵ Q TC 

 0.5 37.88763 0.35 3.977036 0.24316 -167.6088 

 0.6 37.94428 0.4 5.078415 0.24409 -79.01093 

 0.7 38.0009 0.5 6.218579 0.22837 -14.07501 

 0.8 38.05594 0.7571033 7.380817 0.23451 34.86579 

 0.9 38.10635 0.8104821 8.523202 0.23787 78.0227 

N 1 38.15353 0.862946 9.65368 0.22090 115.4864 

 1.1 38.19849 0.914891 10.78091 0.23450 148.584 

 1.2 38.24193 0.966641 11.91222 0.23682 178.2519 

 1.3 38.28435 0.02847 13.05402 0.23593 205.1735 

 1.4 38.32611 0.080619 14.21214 0.24164 229.8619 

 1.5 38.36751 0.133302 15.39207 0.23923 252.7117 

 250 38.15353 0.862946 9.65368 0.23822 115.4864 

 300 38.16597 0.9251851 9.82588 0.24873 60.19978 

O 350 38.17068 0.9804247 9.88684 0.23599 8.281298 

 400 38.17079 0.9 9.88822 0.24316 − 39.76307 

 450 38.17079 0.9 9.88822 0.23793 − 89.76307 

 500 38.17079 0.9 9.88822 0.21824 -139.7631 

 0.25 38.17 0.8768251 8.805374 0.23789 81.89589 

 0.35 38.16328 0.8705343 9.13195 0.23142 94.80591 

ω0 0.45 38.15673 0.8652448 9.47529 0.25901 108.4122 

 0.5 38.15353 0.862946 9.65368 0.20389 115.4864 

 0.55 38.15036 0.860864 9.83679 0.23609 122.7472 

 0.03 38.13038 0.8627587 9.58556 0.25763 115.4772 

 0.04 38.14193 0.8628522 9.61954 0.24004 111.4818 

θ0 0.05 38.15353 0.862946 9.65368 0.22090 115.4864 

 0.06 38.16517 0.8630402 9.68797 0.23787 115.4909 

 0.07 38.17686 0.8631347 9.72242 0.24004 115.4954 

 4 37.25383 0.8530457 9.90399 0.23450 127.9043 

 4.5 37.70599 0.8579787 9.77778 0.27431 121.6416 

c 5 38.15353 0.862946 9.65368 0.25763 115.4864 

 5.5 38.59664 0.8679487 9.53156 0.24164 103.4366 

 6 39.03549 0.8729876 9.41132 0.24240 103.4901 
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1.65, 0.05, 0.15 38.11731 0.8628486 9.66483 0.23451 115.984 

1.70, 0.10, 0.20 38.13542 0.8628972 9.65925 0.23618 115.7351 

1.75, 0.15, 0.25 38.15353 0.862946 9.65368 0.24164 115.4864 

H 1.80, 0.20, 0.30 38.17163 0.8629951 9.64811 0.22837 115.2379 

1.85, 0.25, 0.35 38.18972 0.8630443 9.64254 0.26353 114.9895 

 1 38.13981 0.8628748 9.65777 0.23923 115.6747 

 1.5 38.14667 0.8629104 9.65572 0.23872 115.5806 

d 2 38.15353 0.862946 9.65368 0.23822 115.4864 

 2.5 38.16038 0.8629817 9.65163 0.24317 115.3923 

 3 38.16724 0.8630174 9.64958 0.20389 115.2982 

 0.6 38.1645 0.8630031 9.6504 0.24390 115.3359 

 0.7 38.15901 0.8629746 9.65204 0.24316 115.4111 

b0 0.8 38.15353 0.862946 9.65368 0.15278 115.4864 

 0.9 38.14804 0.8629175 9.65532 0.23682 115.5617 

 1 38.14255 0.862889 9.65695 0.23593 115.637 

 360 32.22058 0.940225 9.52434 0.23599 36.52752 

 480 35.04936 0.9005406 9.61415 0.24164 73.42949 

a0,b0 fixed 600 38.15353 0.862946 9.65368 0.23609 115.4864 

720 41.56169 0.8272483 9.6493 0.24409 163.2291 

840 45.30511 0.7932825 9.60662 0.23793 217.2455 

5 211.4593 0.4532178 4.850405 0.24873 248.142 

10 102.6734 0.592643 6.845838 0.24164 846.5321 

b0,a0 fixed 20 58.91941 0.7288322 8.513484 0.25901 350.4908 

25 38.15353 0.862946 9.65368 0.23822 115.4864 

30 31.79227 0.9301426 9.97968 0.21824 45.17976 

Table 5 Sensitivity analysis of the optimal solution for the price-dependent logarithmic demand 

function. 

Parameter p T ϵ Q TC 

 0.5 8.452645 0.1473383 0.24227 318.1532 7121.271 

 0.6 8.457781 0.1628178 0.23593 356.2209 7405.72 

 0.7 8.462536 0.1771819 0.22090 391.721 7627.544 

 0.8 8.466996 0.1906759 0.24873 425.2251 7806.964 

 0.9 8.471218 0.20347 0.23599 457.1302 7956.096 

N 1 8.475246 0.215688 0.23451 487.7249 8082.7 

 1.1 8.489529 0.2191596 0.24227 499 8190.552 

 1.2 8.506626 0.2177661 0.24316 499 8279.137 

 1.3 8.520488 0.216608 0.23793 499 8352.867 

 1.4 8.531955 0.2156302 0.23450 499 8415.206 

 1.5 8.541598 0.214794 0.21824 499 8468.614 

 250 8.475246 0.215688 0.25901 487.7249 8082.7 

 300 8.503019 0.2229333 0.23789 499 7866.451 

O 350 8.538332 0.2250648 0.23822 499 7652.768 

 400 8.573849 0.2272654 0.24398 499 7441.045 

 450 8.609569 0.2295383 0.23923 499 7231.308 

 500 8.645493 0.2318868 0.23787 499 7023.585 

 0.25 8.469876 0.1961207 0.23609 437.4096 7839.159 

 0.35 8.471851 0.2032807 0.24164 455.7826 7933.293 

ω0 0.45 8.47405 0.2113019 0.23699 476.4169 8031.715 

 0.5 8.475246 0.215688 0.23682 487.7249 8082.7 

 0.55 8.477004 0.2199997 0.15278 499 8134.968 

 0.03 8.472783 0.2171689 0.24577 489.8997 8100.075 

 0.04 8.474017 0.2164268 0.25763 488.8116 8091.38 

θ0 0.05 8.475246 0.215688 0.23142 487.7249 8082.7 
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 0.06 8.476469 0.2149528 0.23762 486.6396 8074.034 

 0.07 8.477685 0.214221 0.26353 485.5559 8065.381 

 4 8.134191 0.1989559 0.2431 488.8587 10339.61 

 4.5 8.301964 0.2068661 0.24398 488.6647 9188.811 

P 5 8.475246 0.215688 0.23618 487.7249 8082.7 

 5.5 8.65422 0.2256095 0.24316 485.9041 7024.404 

 6 8.839088 0.2368774 0.24390 483.0393 6017.295 

 1.65, 0.05,0.15 8.471941 0.2180448 0.24390 492.8519 8107.643 

 1.70, 0.10,0.20 8.473601 0.2168579 0.24227 490.2705 8095.139 

H                   1.75, 0.15, 

0.25 
8.475246 0.215688 0.26353 487.7249 8082.7 

 1.80, 0.20,0.30 8.476875 0.2145349 0.23793 485.2145 8070.326 

 1.85, 0.25,0.35 8.478489 0.2133981 0.22837 482.7386 8058.016 

 1 8.473698 0.2166757 0.23923 489.8924 8094.202 

 1.5 8.474473 0.2161806 0.23599 488.8058 8088.445 

d 2 8.475246 0.215688 0.24164 487.7249 8082.7 

 2.5 8.476015 0.2151981 0.23822 486.6496 8076.967 

 3 8.476782 0.2147108 0.23593 485.5798 8071.246 

 0.6 8.476476 0.2149054 0.23682 486.007 8073.533 

 0.7 8.475862 0.2152959 0.24317 486.8642 8078.113 

b0 0.8 8.475246 0.215688 0.23142 487.7249 8082.7 

 0.9 8.474628 0.2160818 0.22090 488.5892 8087.295 

 1 8.474009 0.2164773 0.23787 489.4571 8091.897 

 360 7.792554 0.2713326 0.25901 426.128 4445.023 

 480 8.148722 0.2396727 0.24316 458.558 6170.702 

A0,b0 fixed 600 8.475246 0.215688 0.24317 487.7249 8082.7 

720 8.786595 0.1906345 0.22090 499 10163.28 

840 9.08129 0.1672878 0.22837 499 12394.47 

5 10.47639 0.1819163 0.23451 453.5103 13543.77 

10 9.24619 0.2003775 0.23142 474.1908 10164.04 

b, a fixed 20 8.475246 0.215688 0.24409 487.7249 8082.7 

25 7.930435 0.2292571 0.23822 497.156 6636.54 

30 7.520637 0.2393667 0.23450 499 5558.827 

Table 6 Sensitivity analysis of the optimal solution for the price-dependent polynomial 

demand function. 


